Measure concentration and the weak Pinsker property

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measure Concentration and the Weak Pinsker Property

Let pX,μq be a standard probability space. An automorphism T of this space has the weak Pinsker property if for every ε ą 0 it is isomorphic to a direct product of a Bernoulli shift and an automorphism of entropy less than ε. This property was introduced by Thouvenot, who conjectured that it holds for all measure-preserving systems. This paper proves Thouvenot’s conjecture. The proof applies wi...

متن کامل

Weak Banach-Saks property in the space of compact operators

For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and‎ ‎a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$‎, ‎it is shown that the strong Banach-Saks-ness of all evaluation‎ ‎operators on ${mathcal M}$ is a sufficient condition for the weak‎ ‎Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in‎ ‎Y^*$‎, ‎the evaluation op...

متن کامل

Poisson-Pinsker factor and infinite measure preserving group actions

We solve the question of the existence of a Poisson-Pinsker factor for conservative ergodic infinite measure preserving action of a countable amenable group by proving the following dichotomy: either it has totally positive Poisson entropy (and is of zero type), or it possesses a Poisson-Pinsker factor. If G is abelian and the entropy positive, the spectrum is absolutely continuous (Lebesgue co...

متن کامل

The Weak Repulsion Property

In 1926 M. Lavrentiev [7] proposed an example of a variational problem whose infimum over the Sobolev spaceW, for some values of p ≥ 1, is strictly lower than the infimum overW1,∞. This energy gap is known since then as the Lavrentiev phenomenon. The aim of this paper is to provide a deeper insight into this phenomenon by shedding light on an unnoticed feature. Any energy that presents the Lavr...

متن کامل

The Strong Approximation Property and the Weak Bounded Approximation Property

We show that the strong approximation property (strong AP) (respectively, strong CAP) and the weak bounded approximation property (respectively, weak BCAP) are equivalent for every Banach space. This gives a negative answer to Oja’s conjecture. As a consequence, we show that each of the spaces c0 and `1 has a subspace which has the AP but fails to have the strong AP.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications mathématiques de l'IHÉS

سال: 2018

ISSN: 0073-8301,1618-1913

DOI: 10.1007/s10240-018-0098-3